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A numer ica l  p rocedure  is  p resen ted  for  determining nonsta t ionary boundary conditions; it  is 
based on in t e rva l -by - in t e rva l  regular iza t ion  of l inear ized  r e v e r s e  p rob lem of heat conduction. 

To de te rmine  the boundary conditions for  nonstat ionary heat  exchange one has in many problems  to 
solve the r e v e r s e  p rob lem for  the heat-conduct ion equation with t ime-dependent  coefficients.  In a number 
of cases  the assumption that the coeff icients  a re  constant may  produce considerable e r r o r s  in the de t e r -  
mination of heat  f luxes o r  t empera tu re s  on the surface  of a solid body. In [1] d i rec t  numer ica l  methods 
were proposed for  solving nonlinear  r e v e r s e  p rob lems  of heat conduction. Stability of the solution p ro -  
cedure was achieved by introducing const ra ints  on the t ime-s tep  (the "step" regular iza t ion  of solution). 
In this ar t ic le  a numer ica l  a lgor i thm is cons idered  for  r e s to r ing  the boundary conditions in an one dimen-  
sional r e v e r s e  p rob lem with physical  heat  cha rac t e r i s t i c s  which are  discontinuous in the coordinate and 
a re  t empera tu re  dependent; a s imi la r  condition is  not employed in the algori thm. 

Our approach is  based essent ia l ly  on l inear izat ion over  time in te rva ls  of the original  formulat ion 
with subsequent regular iza t ion  of the l inear  p rob lem using the scheme proposed in [2, 3]. 

Let  us consider  the quas i l inear  equation of heat  conduction in a solid body, 

9 c O T - -  0 (~ OT)  
o~ ox -~x ' x - ~ (Y) ,  o = p (Y) ,  C = C (T) .  (1) 

It is  assumed that a second boundary-value p rob lem is formula ted  and that an a lgor i thm is available for  i ts 
solution. To be specific let  us consider  the often encountered case of a two- layer  lamina whose one side is 
subjected to a var iable  heat flux qff)  and the o ther  is thermal ly  insulated (a t ransi t ion to nonsta t ionary 
second boundary condition causes  no difficulties).  The initial  t empera tu re  profi le  is  known. 

Following [4] we write down the f in i te -d i f ference  analog of the prob lem which cor responds  to the ap-  
proximat ion of the heat-conduct ion equation by an implici t  6-point scheme: 

Au = B, (2) 
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n = l ,  2 . . . . .  m, i = 0 ,  i . . . . .  n i . . . .  , k, n i + n ~ = k ,  

p = 0 ,  1 . . . .  , k, P @ n i ,  

s = l ,  2 . . . . .  k - - l ,  s @ n i ,  

? = 1 ; 2, T i,0 = q~ (xi)- 

Thus,  if  the heat  flux qff)  i s  known one can find the t e m p e r a t u r e  field T(x, r )  of the lamina  provided 
the foUowing data a re  given: r m, m,  bt, at ,  b2, n2, ~p(x), X(1)(T), p(i)(T), C(t)(T), X(2)(T), p(2)(T), C(2)(T). 
If  i t  i s  n e c e s s a r y  to r e a c h  the requ i red  a c c u r a c y  of T(x, r) an i t e ra t ive  p r o c e s s  in the coeff ic ients  is  o r -  
ganized a t  each  step. 

Let  us now cons ider  one of the feas ib le  ways of using the regu la r iza t ion  method [5] to solve a r e v e r s e  
p r o b l e m  when one seeks  the unknown heat  flow q{r) f r o m  the given t e m p e r a t u r e  Tx(T) at  a point i = x .  

On the t ime in te rva l  0 - r m  under cons idera t ion  the in te rva l  Ar  N = r n = N _ l - r n = N + l _ l  of length l A r ( 1  
--< N ~ m - - l  + 1, l > 0 is  an integer)  i s  c o n s i d e r e d  and on i t  one l inea r i zes  the t e m p e r a t u r e  de te rmina t ion  
by a s suming  that  the phys ica l  heat  coeff ic ients  a re  functions of the cOordinate and co r respond  to the t e m -  
pe r a tu r e  prof i le  a t  the ins tant  r = rN_l:  

~(v) )v(~) ~(v) p(V) g,(v) C(~) i ,n = ( T i  N--I) '  : ( T i , N _ I ) ,  ~ i , n  : , p i , n  (Ti,x__l) ; ? = 1 2. 

Then in a g r e e m e n t  with the genera l  superposi t ion  pr inciple  the t e m p e r a t u r e  T x  is  r e p r e s e n t e d  as a 

sum of solutions fo r  ze ro  ini t ial  conditions and for  zero  ini t ial  t e m p e r a t u r e  dis t r ibut ions  r e spec t ive ly ,  

+ T~ (,) . (3) 

By t rans i t ion  f r o m  a single t h e r m a l  ef fec t  on the finite t ime in te rva l  to a difference f o r m  of the expres s ion  
(3) [6, 7] the following s y s t e m  of l inear  a lgebra ic  equations with t r i angu la r  m a t r i x  (j = 1 co r r e sponds  to 
n = N) is  obtained for  the de te rmina t ion  of the gr id  function qn on a l inear iza t ion  port ion:  

J 

Z (Pi q~ = [J, g - - 1 ,  2 . . . . .  I, (4) 
i=1 

wile re  

(pN = T u  J o - -  T x j  qi: 1=0 ' " l Oi==l:=l'q]> t= 
j ~ i  ==TI,N--I ~)i ~=Tt',N--I 

t J  = T~j  - -  T• [ 
q]~1:0  

�9 ] ~i  =Ti ,N--I  

~ denotes  the "exper imenta l "  t e m p e r a t u r e .  

One adopts  the following for  the regu la r iza t ion  functional: 

l J / 
q @[q" a] = ' ~  ( X  q"~q'-- f j  )2 q- a X (J+i- -qJ)  �9 

d=l  i= t  1=1 

The par t i a l  de r iva t ives  of @ with r e s p e c t  to qj a re  now obtained and a re  made equal  to zero.  This 
r e s u l t s  in l equations for  I + 2 unknowns. To solve the p r o b l e m  the boundary conditions mus t  be added. 

I t  is  a s s u m e d  that fo r  the f i r s t  s e r i e s  of points  n = 1 . . . . .  I ( N  = 1)  one has  

q~=o = qjfi, 

qi=z = qj=z+l" 

Fo r  the subsequent  s e r i e s  of points  (N > 1) one se t s  

qi=0 -- qn=~-v 

q:=z = qi=l+~ �9 

The re la t ions  (5), (6) and (8) r e p r e s e n t  "na tura l  boundary conditions. " The value qn=N_1 is  the 
e x t r e m e  lef t  value of the heat  flux which is  known f r o m  the p reced ing  r egu la r i z ing  sys tem.  

(5) 
(6) 

(7) 
(8) 
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For  a chosen in t e rva l  Am" N this r e s u l t s  in a s y s t e m  of a lgebra ic  equations s i m i l a r  to the s y s t e m  (16) 
of [2]; if  i t  i s  solved fo r  a given value of the regu la r i za t ion  p a r a m e t e r  a one obtains the function qa 0"). 
To f o r m  the coeff ic ients  and the r igh t -hand  s ides  of the s y s t e m  the or ig inal  s y s t e m  (2) for  qn = 0 and qn=N 
= 1, qn>N = 0 r e s p e c t i v e l y  (n = N . . . . .  N + /--1) mus t  be solved 2 l t imes .  

The choice of the regu la r iza t ion  p a r a m e t e r  a depends on the specif ied e r r o r  level  [8, 9, 10], 

• (c,) = 6, 

where 6 is  the e r r o r  of the input data which in turn depends on the t ime in te rva l  under considerat ion,  

I ~ J N 2' . o :  (X 

] ~ --: -~,- a Xiqs.,1--qj) 2. P~ 
/=1 

t 

Since the or ig inal  p r o b l e m  of finding the boundary conditions has been reduced by our  a lgor i thm of an 
i te ra t ive  solution of a number  of separa te  l inea r  p r o b l e m s  and since,  m o r e o v e r ,  in each  such p r o b l e m  one 
has to de te rmine  the op t imal  value of a t he re fo re  i t  i s  impor t an t  that  the compute r  t ime requ i red  to auto-  
mate  the de te rmina t ion  of the p a r a m e t e r  be shor tened in accordance  with the e r r o r  pr inc ip le  in the f o r m  
of an equality.  

I t  is not advisable  to choose a by the inner  convergence  of the r egu la r i zed  approx imat ions  since the 
automat ion of such a p r o c e s s  would be difficult.  

a 
One se lec t s  f r o m  the obtained qa  the f i r s t  M values  (I < M < l) which one adopts for  the sought qJ--<-M j 

= qn(N <- n -< N + M-- l ) .  The remain ing  values  a r e  r e jec ted  and will be de te rmined  in subsequent  ca lcu la -  
tions. 

Having computed the heat fluxes qn the direct problem of finding the temperature field Ti, a(N - a 
-< N + M--I) is solved in accordance with the algorithm (2) described above. The temperature profile 
Ti, N+IVI-I is adopted as the initial distribution to solve a similar regularizing system on the subsequent time 

port ion.  

I t  is  advisable  that  for  the f i r s t  points  in t ime the o r d e r  of the r egu la r i z ing  s y s t e m  l be higher  than 
for  the subsequent  groups  of points .  Since the conditions at  the ends of the in t e rva l  a re  not known one has  
to adopt the "natura l"  boundary conditions q '  = 0 which r e s u l t s  in the solution "deviat ing" f r o m  the true one 
in the neighborhood of these ends.  The approx imat ion  obtained in the middle of the in te rva l  i s  suff icient ly 
exact .  There fo re ,  the f i r s t  va lues  q j  up to the mid in te rva l  can he r e g a r d e d  as  the sought va lues  and need 
not be improved  in fu r the r  ca lcula t ions  (all the more  since in the ini t ial  stage the p r o p e r t i e s  hard ly  change). 

The choice of the lengths of in t e rva l s  which can be unequal and of the quant i t ies  AT N should depend 
on the p r o b l e m  under cons idera t ion  and on the expec ted  solution. They can be l a r g e r  fo r  body c h a r a c t e r -  
i s t i c s  which change slowly with t e m p e r a t u r e  and with a sl ight change of the ex te rna l  heat  load; one should 
na tura l ly  choose s m a l l e r  ones  fo r  intensive changes of heat  f luxes towards  the body with the p r o p e r t i e s  
depending s t rongly  on t e m p e r a t u r e  (this i s  e spec i a l l y  valid for  M). 

We ' sha l l  now d i scuss  b r ie f ly  another  approach  to a numer i ca l  solution of the r e v e r s e  p r o b l e m  under 
considera t ion.  F o r  T = 0 the lef t  ends of the t ime in te rva l s  a re  kept fixed, and the r ight  ends,  as p r e -  
viously,  will change by the quantity h ~  N. The r ep re sen t a t i on  (3) r e m a i n s  valid in this case  provided one 
takes  into account  that  phys ica l  heat  p r o p e r t i e s  a re  r e g a r d e d  as  functions of the coordinate  and of t ime with 
the except ion of the l as t  in te rva l  AT N in which they a re  calcula ted f r o m  the t e m p e r a t u r e  prof i le  at  V = TN_ t. 

I t  is  advisable  to cons t ruc t  the r egu la r i z ing  n u m e r i c a l  a lgor i thm under  cons idera t ion  by using a " t r i a l "  
solution q*;  fo r  the l a t t e r  one should, of course ,  adopt the funct ion qa  (r) obtained by solving the r e g u l a r i -  
zation s y s t e m  on the p reced ing  t ime in te rva l ;  on the l a s t  step AT N one can se t  q*(~) = qa (TN_I) = coast .  
Thus d i sc re t e  values  of the sought function a re  ca lcula ted  in our  scheme i . terat ively with continuous i m -  
p r o v e m e n t s  until ins tant  r m ,  and i t  i s  not n e c e s s a r y  to join together  the solutions when pass ing  f r o m  one 
t ime in te rva l  to another .  However,  with the p a r a m e t e r  N inc reas ing  the o r d e r  of the regu la r i za t ion  s y s t e m  
grows ,  and as  a r e s u l t  the total  cos t  of compu te r  t ime is  higher  than in the p rev ious  scheme.  
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Since the proposed schemes for solving nonlinear reverse  problems are based on interval--af ter-  
interval regularization of the linearized problem theY can be t ransfer red  to a generalized heat-conduction 
equation, pC(ST/St) = 8/Sx[A(BT/Sx)] + K(ST/Sx) + Q. In this ease the finite-difference equivalent of the 
equation requires  modification and one assumes that on the regularization interval the coefficient K is a 
function only of x (by analogy with X, p and C). The source of heat Q on the extension of this time interval 
is approximated by a linear function of temperature.  

Our procedure can be extended to solve the reverse  problem with a moving boundary without involving 
anyma jo r  modifications provided its motion is known. 
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NOTA T I O N  

is the temperature-conductivity coefficient; 
are the thickness of 1st and 2nd lamina layers;  
is the specific heat; 
is the number of time steps; 
are the number of space steps for 1st and 2nd layers  of the lamina; 
is the heat flux to the body due to heat conduction; 
is the regularized solution of the reverse  (inverse) heat-conduction problem; 
is the temperature;  
is the space coordinate; 
is the regularization parameter ;  
is the number of lamina layers;  
is the space steps for 1st and 2nd lamina layers;  
is the time step; 
is the regularization interval; 
is the heat-conductivity coefficient; 
is the density; 
is the time; 
is the right-end value of the entire time interval; 
is the initial temperature distribution in body. 
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